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Process variation

Process variation in the 
miniaturized system
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Process variation

Sources of process variations: manufacturing & environment

Importance
qDevice performance, quality, and yield
qMore significant as the scales of devices decrease
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Rethink process variation modeling

Statistical distribution
PDF

Performance outputDescription of variation

Worst case A set

Reality: statistical but 
unknown distribution Possible PDFs
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Why? Case 1: poor data quality
A typical process of extracting process variation models

Testing chip 
design & fab

Data 
measurement

Statistical 
model (e.g., PDF)
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Why? Case 1: poor data quality
A typical process of extracting process variation models

Testing chip 
design & fab

Data 
measurement

Statistical 
model (e.g., PDF)

• Data is limited and noisy
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Why? Case 2: model misfit
A typical process of extracting process variation models

Testing chip 
design & fab

Data 
measurement

Statistical 
model (e.g., PDF)

• The chosen statistical model is over-simplified

DataData
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Why? Case 3: time shift
A typical process of extracting process variation models

Testing chip 
design & fab

Data 
measurement

Statistical 
model (e.g., PDF)

• PDF can change over time

Practical 
deployment

• Data is limited and noisy
• The chosen statistical model is over-simplified

Three cases can happen together, we name them 
Variation shifts
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Shift-aware optimization

𝜉 ∈ Ξ

Traditional robust 
circuit optimization

𝑓(𝑥, 𝜉)

Traditional stochastic 
circuit optimization

Distributionally robust
circuit optimization (DRO)

All possible 
distributions
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How to solve DRO?

Nominal PDF
(e.g., Gaussian)

Possible actual PDF
(e.g., Gaussian mixture)

Distribution ball

Key: a careful modeling of the distributional uncertainty set

radius 𝜀

Challenges
• The inner problem is non-trivial to solve
• Two-level problem is computationally 

heavy  
• No analytical function for circuit 

performance

Degeneration
• Robust optimization: 𝜌(𝜉) is a delta function
• Stochastic programming: 𝜖 → 0
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How to solve DRO?

Nominal PDF
(e.g., Gaussian)

Possible actual PDF
(e.g., Gaussian mixture)

Distribution ball

Key: a careful modeling of the distributional uncertainty set

radius 𝜀
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How to solve DRO?

• Two-level min-max → Single 
minimization (exact reformulation)

• The regularization parameter 𝜀 is 
physically meaningful  

• Works for other 𝜑-divergence measure 

Can be solved by many optimizers 
• Bayesian optimization
• Gradient-based optimizers

Penalizing the design that has a large 
variance under the nominal PDF 𝜌!
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Bayesian optimization (BO) solver

Initial probabilistic 
surrogate model

Query based on 
uncertainty estimation

Update the 
surrogate model
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Workflow: DRBO solver

Step 1: Build a Gaussian process regression model

Step 2: Design exploration through minimizing the lower confidence bound 
(LCB) acquisition function

Step 3: If not converge, add samples of 𝜉, return to step 1 
Penalizing the design that 
has a large variance under 
the nominal PDF 𝜌!
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Demonstration in yield-aware optimization
Goal: under shifted variations, to ensure both high performance and high yield

Loss describing 
performance metric

Indicator function 
describing circuit failure (thus yield)

Mach-Zehnder interferometer

Two-stage amplifier

Although different circuits, share the same formulation 
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Demonstration in yield-aware optimization

Robustness against misfit of variation 
models & noisy data 

Misfit model: Gaussian
Actual: Gaussian mixture

mixture rate Method Perf loss yield

3:7 proposed 0.2195 91.63%

LCB 0.2373 85.74%

5:5 proposed 0.2285 88.92%

LCB 0.2343 86.85%

7:3 proposed 0.2249 87.73%

LCB 0.2287 87.11%

The proposed method provides better yield and 
performance when the actual PDF of process va
riations differ from the given one.

Misfit increases

LCB: optimize with fixed misfit model
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More numerical results (Time shift)

Practical variations gradually diverge 
from nominal distribution with time

• The LCB performs the best when the shift is not 
significant (𝑡 ≤ 40)

• When 𝑡 > 40, larger error bounds (radius 𝜀) 
provide more robust solutions under
distributional shift

LCB: optimize with fixed misfit model
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• The practical issues of variation shifts: data quality, model misfit, time shift
• Distributionally robust formulation for optimization under shifts
• Efficient Bayesian optimization solver for the DRO formulation, showing 

robustness against shifted variations

Take-home message

Open questions: 

● Higher-dimensional cases

● More domain customized modeling of the variations


